

Thermochimica Acta 352-353 (2000) 47-52

thermochimica acta

www.elsevier.com/locate/tca

Thermal behavior of aluminum fluoride trihydrate

Xu Delong^{a,*}, Luo Yongqin^{a,1}, Ji Ying^a, Zhou Longbao^b, Gai Wenkui^b

^aInstitute of Powder Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, Shaanxi, PR China ^bBai Yin Fu Hua Yan Trade Co. LTD, Bai Yin 730901, Gansu, PR China

Received 2 June 1999; received in revised form 20 August 1999; accepted 16 September 1999

Abstract

The thermal decomposition of aluminum fluoride trihydrate was investigated by TG-DTG. The process was recognized to involve three stages:

 $I \quad AlF_3 \cdot 3H_2O \overset{108-277^\circ C}{\rightarrow} AlF_3 \cdot 0.5H_2O + 2.5H_2O$

III
$$AlF_3 \cdot 3H_2O \xrightarrow{>380^{\circ}C} Al_2O_3 + 6HF$$

It was found that the apparent activation energy, E, and the preexponential factor, A, for stage I reaction were 41.9 kJ mol⁻¹ and $10^{2.49}$ s⁻¹, respectively. For stage II reaction, the value of E was 47.5 kJ mol⁻¹ and the most probable differential mechanism function was in the form of $(1-\alpha)$, and magnitude of 80.4 kJ mol⁻¹ of E and a function in the form of $3/(2(1-\alpha)[-\ln(1-\alpha)^{1/3}])$ were derived for stage III reaction. From the measurements conducted under increasing temperature conditions, contents of fluorine, $C_{\rm F}(\%)$, on moisture-free basis and water, $C_{\rm W}(\%)$, on current mass basis contained in the AlF₃·3H₂O sample were determined and correlation between the temperature range dictated by the quality specification of AlF₃, $C_{\rm F} \ge 61.0\%$, $C_{\rm W} < 0.5\%$, and the heating rate were presented. The content of fluorine and water were also determined under isothermal conditions and correlation between the time duration of the treating temperature necessary for the quality specification to be met, and the magnitude of temperature were presented. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: AlF₃·3H₂O; Isothermal; Kinetic parameters; Non-isothermal; TG-DTG; Thermal behavior

1. Introduction

Anhydrous aluminum fluoride is used in the electrolytic reduction for production of metal aluminum. In the wet process, the anhydrous fluoride is prepared by heating trihydrated aluminum fluoride. Its thermal decomposition behavior has been reported in previous papers [1–4]. Some of the works treated the thermal behavior of $AlF_3 \cdot 3H_2O$ in aqueous solution [1]. Istomin et al. [2,3] reported qualitatively the dehydration process of $AlF_3 \cdot 3H_2O$ and relevant inferences, and they revealed the rate-limiting stages in the dehydration process of $AlF_3 \cdot 3H_2O$. For preparing AlF_3 from $AlF_3 \cdot 3H_2O$, with specified quality and reduced energy consumption, the technical parameters are required, however it has rarely been reported. This investigation project intends to reveal the kinetic behaviors of

^{*} Corresponding author. Fax: +86-29-5535724.

¹ Fax: +86-29-5535724.

^{0040-6031/00/\$ –} see front matter \odot 2000 Elsevier Science B.V. All rights reserved. PII: $S\,0\,0\,4\,0\,-\,6\,0\,3\,1\,(9\,9\,)\,0\,0\,4\,3\,6\,-\,0$

dehydration of $AlF_3 \cdot 3H_2O$ and hydrolytic reaction of AlF_3 with water and to determine the values of relevant kinetic parameters.

2. Experimental

2.1. Materials

 $AlF_3 \cdot 3H_2O$ used in the experiments was for commercial use, produced by Baiyin Fu Hua Yan Trade Co. Ltd., Baiyin, Gansu, China. The samples were dried in an oven at the temperature of 100–105°C for 2 h and sieved through a 120 mesh sieve before test. MgO used was analytically pure reagent. It was ignited at 900°C for 2 h before use.

2.2. Experimental apparatus and conditions

A thermogravimetry analysis system of TGA7 (Perkin-Elmer Co., USA) was used to study the thermal decomposition process. Inert atmosphere was provided by flowing N₂ of 60 ml min⁻¹. Sample mass of about 6 mg was used in each test. A series of nonisothermal TG-DTG experiments with heating rates of 5, 10, 20, 50, 80 and 130° C min⁻¹ were conducted in the program. Another series of isothermal TG-DTG experiments were carried out at the temperature of 500, 550, 600, and 650°C.

3. Results and discussion

3.1. Thermal behavior and decomposition process

Typical curves, at the heating rate of 10° C min⁻¹, for aluminum fluoride trihydrate, AlF₃·3H₂O and the system AlF₃·3H₂O/MgO are shown in Fig. 1 and the data are listed in Table 1. A three-stage mass loss process is clearly observable from the TG curve for AlF₃·3H₂O. In the first stage, with the temperature being in the range 108 and 277°C, a mass loss of 32.69% is observed. This value is in good agreement with the calculated one of 32.61% for the loss of 2.5 molecules of water from AlF₃·3H₂O. In the second-stage, the temperature varied from 277 to 550°C, meanwhile the sample further decomposed. The value of mass loss of 6.96% found from this stage is again in

Fig. 1. TG-DTG curves of AlF₃·3H₂O and system AlF₃·3H₂O/MgO at a heating rate of 110° C min⁻¹.

good agreement with the theoretically predicted value of 6.52%, indicating the anhydrous aluminum fluoride result. As the temperature exceeds 380° C the third-stage reaction begins. This stage is a hydrolytic reaction of AlF₃ with water. On the basis of the experiment carried out and the calculated results, the following reactions are suggested for defining the thermal decomposition processes of AlF₃·3H₂O.

$$\begin{split} AlF_3 \cdot 3H_2O & \stackrel{108-277^\circ C}{\rightarrow} AlF_3 \cdot 0.5H_2O + 2.5H_2O \\ AlF_3 \cdot 0.5H_2O & \stackrel{277-550^\circ C}{\rightarrow} AlF_3 + 0.5H_2O \\ 2AlF_3 \cdot 3H_2O & \stackrel{>380^\circ C}{\rightarrow} Al_2O_3 + 6HF \uparrow \end{split}$$

3.2. Kinetic parameters determined from the firststage dehydration reaction

In order to determine the kinetic parameters that is the apparent activation energy, E, and preexponential factor, A, of the first-stage dehydration reaction for the title compound, a multiple heating method (Kissinger's method [4]) was employed. As shown in

Table 1 Mass loss vs. temperature for $AlF_3{\cdot}3H_2O$

Stage	Temperature range (°C)	Mass loss (9	%)
		Exp.	Theory
First-stage Second-stage Third-stage	108–277 277–550 >380	32.69 6.96	32.61 6.32

Fig. 2. Kissinger's plot of the first-stage dehydration reaction peak temperature deduced from DTG curves.

Fig. 2, the relationship of $\ln(\beta/T_p^2)$ versus T_p^{-1} presents a straight line, where β is the heating rate, T_p is the maximum peak temperature applied during the reaction mentioned above. From the experimental data in Fig. 1, the calculated value of apparent activation energy is determined to be 41.9 kJ mol⁻¹ and of the preexponential factor to be $10^{2.49}$ s⁻¹. The correlation coefficient is 0.998.

3.3. Apparent activation energy and mechanism function of the second-stage reaction for the title compound

Based on the total mass loss in the temperature range, 277–550°C, of the second-stage dehydration reaction of AlF₃·0.5H₂O, the mass loss fraction, α , in various temperature intervals are calculated by referring to the TG curve shown in Fig. 1. The calculated data are shown in Table 2. In accordance with Phadnis' method [5], substitution of the data of α into the

Table 2 Mass loss fraction of the second-stage dehydration of $AlF_3 \cdot 0.5H_2O$ determined from TG curve

Data point	$T_{\rm i}~({\rm K})$	α	Data point	$T_{\rm i}~({\rm K})$	α_i
1	562.4	0.1185	6	648.8	0.6000
2	572.5	0.1990	7	680.7	0.7000
3	588.3	0.3016	8	716.4	0.8000
4	604.8	0.4005	9	762.2	0.9000
5	625.1	0.5007			

formulas of $g(\alpha)$, 20 in total, listed in Ref. [6] results in the value of *E* of 47.5 kJ mol⁻¹ and the most probable differential mechanism function, $(1-\alpha)$, by the method of logical choices.

3.4. Kinetic parameters of the hydrolytic reaction of AlF_3 with water

For defining the defluorine process in the hydrolytic reaction of AIF₃ with water in the temperature range $380 \sim 615^{\circ}$ C, Eq. (1) is used to calculate the fluorine content, $C_{\rm F}$, on moisture-free basis preserved at the end of each temperature interval from 380° C to $T_{\rm i}$

$$C_{\rm F_i} = 67.88 - (m_{\rm i}^{\rm A.M.} - m_{\rm i}^{\rm A}) \frac{M_{\rm AIF_3 \cdot 3H_2 \rm O}}{M_{\rm AIF_3}} \qquad (1)$$

Where $m_i^{A.M}$ and m_i^A are the mass fraction, %, of system AlF₃·3H₂O/MgO and AlF₃·3H₂O preserved at temperature T_i , read from Fig. 1, respectively; $M_{AlF_3·3H_2O}$ and M_{AlF_3} are molcule mass of AlF₃·3H₂O and AlF₃ respectively; and the value of 67.88 is the fluorine content in AlF₃. Data of the defluorine in dehydrolytic process of AlF₃ with water are shown in Table 3. The data are determined in the temperature range 380–615°C, with the defluorine fraction being unity for the whole temperature range.

By substituting the calculated data in Table 3 into the formulas of $g(\alpha)$ mentioned above, the value of *E* of 80.4 kJ mol⁻¹ and the most probable differential mechanism function, $3/2(1-\alpha)[-\ln(1-\alpha)^{1/3}]$ are derived by the method of logical choice.

3.5. Relationships between the content of fluorine and water and temperature

Contents of water, C_W , on current mass basis and fluorine, C_F , are expressed as relationships versus

Table	3		

Data of the defluorine reaction in the hydrolytic process of AlF_3 with water

Data point	$T_{\rm i}~({\rm K})$	α_i	Data point	$T_{\rm i}~({\rm K})$	α_i
1	673	0.01	7	826	0.50
2	707	0.05	8	836	0.60
3	733	0.10	9	851	0.70
4	767	0.20	10	863	0.80
5	793	0.30	11	876	0.90
6	811	0.40			

Fig. 3. (a) $C_{\rm W}$ and (b) $C_{\rm F}$ vs. T relationships under different heating rate for AlF₃·3H₂O.

temperature, *T*, with heating rate, β , as parameters, see Fig. 3 and Table 4. Shown in Fig. 3, the values of $C_{\rm F}$ and $C_{\rm W}$ are calculated by using Eqs. (1) and (2)

$$C_{\rm W} = \frac{m_{\rm i}^{\rm A.M.} - m_{\rm B}}{m_{\rm i}^{\rm A.M.}} \times 100\%$$
 (2)

where $m_{\rm B}$ is the final mass fraction of the system AlF₃ 3H₂O/MgO, read at the end of the heating process.

For the aluminum fluoride quality specifications, i.e. $C_W < 0.5\%$, and $C_F \ge 61.0\%$, to be met by a certain heating rate, allowable temperature range is solved from the equations in Table 4. Values solved are tabulated in Table 5 and expressed with empirical equations, as Eqs. (3a) and (3b). From the point of view of controlling the heating process conditions for preparing the qualified AlF₃ from AlF₃·3H₂O, these data and equations should be of practical importance.

$$T > 441.89 + 31.12 \ln \beta$$

for $C_{\rm W} < 0.5\%$ $|r| = 0.9914$ (3a)

$$T \le 308.60 + 134.41 \ln \beta$$

for $C_{\rm F} \ge 61.0\%$ $|r| = 0.9794$ (3b)

3.6. Thermal behavior of $AlF_3 \cdot 3H_2O$ under isothermal conditions

Samples of $AlF_3 \cdot 3H_2O$ were also tested under isothermal conditions with the temperature regulated to 500, 550, 600 and 650°C respectively. The results are shown in Fig. 4.

Fig. 5 depicts the contents of fluorine and water varying with time under constant temperature condition. Table 6 summarizes the relationships of linear regression between the contents of fluorine and water and the time elapsed under specific temperature. Table 7 presents the time duration required to have the quality specification to be met. Eqs. (4a) and (4b) give the regression formulas to predict the required time range.

Table 4								
Relationshi	ps of T	vs. $C_{\rm W}$ and	$C_{\rm F}$ under	different	heating	rates for	AlF ₃	3H ₂ O

-	-			
β (°C min ⁻¹)	C_{W} (%)– T (°C)	R^2	$C_{\rm F}$ (%)– T (°C)	R^2
5	$C_{\rm W} = 7.45 \times 10^{-5} T^2 - 8.53 \times 10^{-2} T + 24.47$	0.9997	$C_{\rm F} = -2.25 \times 10^{-4} T^2 + 17.22 \times 10^{-2} T + 32.41$	0.9869
10	$C_{\rm W} = 7.65 \times 10^{-5} T^2 - 9.55 \times 10^{-2} T + 29.34$	0.9998	$C_{\rm F} = -2.40 \times 10^{-4} T^2 + 19.82 \times 10^{-2} T + 26.50$	0.9982
20	$C_{\rm W} = 7.38 \times 10^{-5} T^2 - 9.10 \times 10^{-2} T + 27.99$	0.9944	$C_{\rm F} = -5.06 \times 10^{-5} T^2 + 4.04 \times 10^{-2} T + 59.86$	0.9984
50	$C_{\rm W} = 3.94 \times 10^{-5} T^2 - 5.36 \times 10^{-2} T + 18.16$	0.9970	$C_{\rm F} = -3.25 \times 10^{-5} T^2 + 2.42 \times 10^{-2} T + 63.47$	0.9992
80	$C_{\rm W} = 4.60 \times 10^{-5} T^2 - 6.32 \times 10^{-2} T + 21.70$	0.9857	$C_{\rm F} = -3.34 \times 10^{-5} T^2 + 3.09 \times 10^{-2} T + 60.55$	0.9973
130	$C_{\rm W} = 3.48 \times 10^{-5} T^2 - 4.90 \times 10^{-2} T + 17.31$	0.9960	$C_{\rm F} = -2.48 \times 10^{-5} T^2 + 2.01 \times 10^{-2} T + 63.86$	0.9986

Table 5 Allowable temperature ranges for the quality specification to be met

β (°C min ⁻¹)	$T(^\circ\mathrm{C})$ for $C_\mathrm{W}{<}0.5\%$	<i>T</i> (°C) for $C_{\rm F} \ge 61.0\%$
5	>495.3	≤521.8
10	>510.5	≤575.9
20	>529.1	≤769.1
50	>570.5	≤838.5
80	>581.5	≤910.3
130	>588.9	≤933.5

Fig. 4. Typical TG curve of AlF₃·3H₂O at 500°C.

Fig. 5. ${}^{\circ}C_{F}-t'$ and ${}^{\circ}C_{W}-t'$ relationships of AlF₃·3H₂O at (a) 500°C; (b) 550°C; (c) 600°C; (d) 650°C.

Table 6				
$C_{\rm F}-t$ and $C_{\rm W}-t$	relationships of	of AlF ₃ ·3H ₂ O	under isothermal	condition

<i>T</i> (°C)	$C_{\rm F}$ (%)–t (min)	<i>r</i>	C _W (%)-t (min)	<i>r</i>
500	$C_{\rm F} = 66.97 - 9.73t \ (C_{\rm F}: 60.0 - 46.5)$	0.9909	$C_{\rm W} = 1.53 - 40.96 \times 10^{-2} \ln (C_{\rm W}: 0.10 - 1.20)$	0.9979
550	$C_{\rm F} = 67.66 - 17.64 \times 10^{-2} t \ (C_{\rm F}: 60.0 - 67.0)$	0.9924	$C_{\rm W} = 1.11 - 29.73 \times 10^{-2} \ln t \ (C_{\rm W}: 0.10 - 0.70)$	0.9947
			$3.76 - 0.82t \ (C_{\rm W}: 0.70 - 1.50)$	0.9999
600	$C_{\rm F} = 68.86 - 25.12 \times 10^{-2} t \ (C_{\rm F}: 60.0 - 67.0)$	0.9992	$C_{\rm W} = 0.65 - 2.48 \times 10^{-2} t \ (C_{\rm W}: 0.05 - 0.55)$	0.9974
			$2.11 - 0.32t \ (C_{\rm W}: \ 0.55 - 1.20)$	0.9999
650	$C_{\rm F} = 68.69 - 91.78 \times 10^{-2} t \ (C_{\rm F}: 50.0 - 66.0)$	0.9959	$C_{\rm W} = 0.58 - 1.83 \times 10^{-2} t \ (C_{\rm W}: 0.20 - 0.55)$	0.9849
			$2.61 - 0.55t \ (C_{\rm W}: 0.55 - 0.80)$	0.9998

Table 7 The isothermal time necessary for the quality specifications to be met by constant temperature treatment

<i>T</i> (°C)	t (min)				
	for C _W <0.5%	for $C_{\rm F} \ge 61.0\%$			
500	>12.36	≤61.36			
550	>7.78	≤37.75			
600	>6.05	≤31.29			
650	>4.37	<u>≤</u> 8.38			

$$t > \exp(5.84 - 6.74 \times 10^{-3}T)$$
 for
 $C_{\rm W} < 0.5\%$ $|r| = 0.9923$ (4a)

t < 224.91 - 0.33T for

 $C_{\rm F} \ge 61.0\% \quad |r| = 0.9799$ (4b)

4. Conclusions

Three stages have been recognized in the thermal decomposition of $AlF_3 \cdot 3H_2O$.

For the first-stage dehydration, the values of *E* and *A* have been determined by experiments to be 41.9 kJ mol^{-1} and $10^{2.49} \text{ s}^{-1}$ respectively.

The value of *E* and the most probable differential mechanism function for the second-stage dehydration are 47.5 kJ mol^{-1} and $(1-\alpha)$ respectively.

For the hydrolytic reaction of AlF_3 , with water, the most probable differential mechanism function is

in the form of $3/2(1-\alpha)[-\ln(1-\alpha)^{1/3}]$ and the value of *E* is 80.4 kJ mol⁻¹.

For the reason that the activation energy for the second-stage is significantly less than that for the third-stage it can be seen that the dehydration rate should be greater than the hydrolytic reaction rate. However, as the temperature further increases, the latter will increase more rapidly than the former.

Based on the TG-DTG measurements the technical conditions for heating $AlF_3 \cdot 3H_2O$ to the qualified AlF_3 have been recommended.

Measurements indicated that greater heating rate was beneficial to dehydration of $AIF_3 \cdot 3H_2O$ and manifested a relative suppression of hydrolytic defluorination. Higher degree of constant temperature resulted in more efficient dehydration of the $AIF_3 \cdot 3H_2O$ and more detrimental to preservation of fluorine.

References

- [1] M. Grobelny, J. Fluorine Chem. 9 (1977) 441-448.
- [2] S.P. Istomin, A.S. Galkov, L.A. Ivantsov, L.S. Babkina, Tsvet. Met. 12 (1978) 39–41 (in Russian).
- [3] S.P. Istomin, A.P. Istomin, A.V. Kyun, Zh. Prikl, Khim (Leiningrad) 54(3) (1981) 517–521 (in Russian).
- [4] Lu Zhenghua, Qing Jinshu 11 (1983) 22-25 (in Chinese).
- [5] H.E. Kissinger, Anal. Chem. 29 (1957) 1072.
- [6] A.B. Phadnis, V.V. Deshpande, Thermochim. Acta 62 (1983) 361–367.